Proposed Item for Biobased Designation The following biobased product information has been collected to support item designation by USDA for the BioPreferred Program. This summary reflects data available as of December 3, 2007. Title: Slide Way Lubricants **Description:** Products used to provide lubrication and eliminate stick-slip and table chatter by reducing friction between mating surfaces, or slides, found in machine tools. **Companies Supplying Item:** 3 companies supplying Slide Way Lubricants have been identified through internet searches, manufacturer's directories, trade associations, and company submissions. **Industry Associations Investigated:** The following industry associations have been investigated for member companies supplying Slide Way Lubricants: - United Soybean Board - Iowa Soybean Association - Organic Trade Association - Independent Lubricant Manufacturers Association - National Lubricating Grease Institute - Society of Tribologists and Lubrication Engineers **Commercially Available Products Identified:** Of the companies identified, 4 Slide Way Lubricants are commercially available on the market. **Product Information Collected:** Specific product information including company contact, intended use, biobased content, and performance characteristics have been collected on 4 Slide Way Lubricants. **Industry Performance Standards:** Product information submitted by biobased manufacturers and suppliers indicate that have typically been tested to the following industry standards: - ASTM International D2161 Standard Practice for Conversion of Kinematic Viscosity to Saybolt Universal Viscosity or to Saybolt Furol Viscosity - $\bullet~$ ASTM International D2270 Standard Practice for Calculating Viscosity Index From Kinematic Viscosity at 40 and $100^{\circ}\mathrm{C}$ - ASTM International D2782 Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Fluids (Timken Method) - ASTM International D2783 Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Fluids (Four-Ball Method) - ASTM International D287 Standard Test Method for API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method) - ASTM International D445 Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity) - ASTM International D5864 Standard Test Method for Determining Aerobic Aquatic Biodegradation of Lubricants or Their Components - ASTM International D665 Standard Test Method for Rust-Preventing Characteristics of Inhibited Mineral Oil in the Presence of Water - ASTM International D92 Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester - ASTM International D97 Standard Test Method for Pour Point of Petroleum Products **Samples Tested for Biobased Content:** 2 samples of Slide Way Lubricants have been submitted to independent laboratories for biobased content testing as specified by ASTM standard D6866-04. **Biobased Content Data:** Results from biobased content testing of Slide Way Lubricants indicate a range of content percentages from 77% minimum to 100% maximum biobased content as defined by ASTM D 6866-04. A detailed distribution of biobased content levels is included as Appendix A. **Products Submitted for BEES Analysis:** Life-cycle cost and environmental effect data for 1 Slide Way Lubricant have been submitted to NIST for BEES analysis. **BEES Analysis:** The life-cycle costs of the submitted Slide Way Lubricants range from 14.28 minimum to 14.28 maximum per usage unit. The environmental scores range from 0.0600 minimum to 0.0600 maximum. A detailed summary of the BEES results is included as Appendix B. #### Appendix A - Biobased Content Data #### Slide Way Lubricants | | Company | Product | C14 | BEES | |---|---------|-----------|-----|------| | 1 | RGWJ | RGWJ-0007 | 77 | Yes | | 2 | HAKV | HAKV-0031 | 100 | | ## **Environmental Performance** Functional Unit: 1 gallon Note: Lower values are better | Category | RGWJ-0007 | |-------------------------|-----------| | Acidification-3% | 0.0000 | | Crit. Air Pollutents-9% | 0.0002 | | Ecolog. Toxicity-7% | 0.0049 | | Eutrophication-6% | 0.0234 | | Fossil Fuel Depl10% | 0,0029 | | Global Warming29% | 0.0030 | | Habitat Alteration6% | 0.0000 | | Human Health-13% | 0.0049 | | Indoor Air-3% | 0.0000 | | Ozone Depletion-2% | 0.0000 | | Smog-4% | 0.0026 | | Water Intake-8% | 0.0181 | | Sum | 0.0500 | | Slide Way Lubricants | | | | | |------------------------|---|------------------------------------|--|--| | Impacts | Units | RGWJ-0007 | | | | Acidification | millimoles H ⁺ equivalents | 5.46E+03 | | | | Criteria Air Polutants | microDALYs | 4.44E-01 | | | | Ecotoxicity | g 2,4-D equivalents | 5.75E+01 | | | | Eutrophication | g N equivalents | 7.48E+01 | | | | Fossil Fuel Depletion | MJ surplus energy | 1.02E+01 | | | | Global Warming | g CO ₂ equivalents | 2.65E+03 | | | | Habitat Alteration | T&E count | 0.00E+00 | | | | Human HealthCancer | g C ₆ H ₆ equivalents | 3.14E+00 | | | | Human HealthNonCancer | g C ₇ H ₈ equivalents | 2.09E+03 | | | | Indoor Air Quality | g TVOCs | 0.00E+00 | | | | Ozone Depletion | g CFC-11 equivalents | 7.46E-08 | | | | Smog | g NO _x equivalents | 9.70E+01 | | | | Water Intake | liters of water | 1.20E+03 | | | | Functional Unit | | 1 gallon of slide way
lubricant | | | ¹ Following are more complete descriptions of units: Acidification: millimoles of hydrogen ion equivalents; Criteria Air Pollutants: micro Disability-Adjusted Life Years; Ecological Toxicity: grams of 2,4-dichlorophenoxy-acetic acid equivalents; Eutrophication: grams of nitrogen equivalents; Fossil Fuel Depletion: megajoules of surplus energy; Global Warming: grams of carbon dioxide equivalents; Habitat Alteration: threatened and endangered species count; Human Health-Cancer: grams of benzene equivalents; Human Health-NonCancer: grams of toluene equivalents; Indoor Air Quality: grams of Total Volatile Organic Compounds; Ozone Depletion: grams of chloroflourocarbon-11 equivalents; Smog: grams of nitrogen oxide equivalents; and Water Intake: liters of water. ## **Economic Performance** Alternatives | Category | RGWJ-0007 | |-------------------|-----------| | First Cost | 14.28 | | Future Cost- 3.0% | 0.00 | | Sum | 14.28 | "No significant/quantifiable performance differences were identified among competing alternatives. Therefore, future costs were not calculated. # Global Warming by Flow Note: Lower values are better | Category | RGWJ-0007 | |---------------------------------|-----------| | (a) Carbon Dioxide (CO2, net) | -2634 | | (a) Carbon Tetrachloride (CCIA) | 0 | | (a) Carbon Tetrafluoride (CF4) | 0 | | (a) CFC 12 (CCI2F2) | 0 | | (a) Chloroform (CHCI3, HC-20) | 0 | | (a) Halon 1301 (CF3B)) | 0 | | (a) HCFC 22 (CHF2CI) | 0 | | (a) Methane (CH4) | 226 | | (a) Methyl Bromids (CH3Br) | 0 | | (a) Mathyl Chloride (CH3Cl) | O. | | (a) Mathylene Chloride (CH2CI2, | 0 | | (a) Nitrous Oxide (NZO) | 5067 | | (a) Trichlorosthans (1,1,1-CH3C | 0 | | Sum | 2648 | ## Human Health Cancer by Sorted Flows* Note: Lower values are better | Category | RGWJ-0007 | |--------------------------------|-----------| | Cancer-(w) Arsenic (As3+, As5+ | 2.05 | | Cancer-(w) Phenol (C6H5CH) | 0.92 | | Cancer-(a) Dioxins (unspecifis | 0.08 | | Cancer(a) Arsenic (As) | 0.04 | | Cancer-(a) Benzene (C6H5) | 0.03 | | All Others | 0.02 | | Sum | 3.14 | [&]quot;Sorted by five topmost flows for worst-scoring product ### Human Health Noncancer by Sorted Flows* #### Aitematives Note: Lower values are better | Category | RGWJ-0007 | |--------------------------------|-----------| | Noncancer-(w) Barium (Ba++) | 611.28 | | Noncancer-(w) Marcury (Hg+, Hg | 427.75 | | Noncancer-(w) Lead (Pb++, Pb4+ | 342.58 | | Noncancer-(w) Cadmium (Cd++) | 215.94 | | Noncancer-(w) Arsenic (As3+, A | 129.68 | | All Others | 362.66 | | Sum | 2,091.08 | ^{*}Sorted by five topmost flows for worst-scoring product